@traversable/zod or zx is a schema rewriter for zod.
@traversable/zod has a peer dependency on Zod (v4).
Read the blog post, Introducing: @traversable/zod (3 min read).
$ pnpm add @traversable/zod zod
Here's an example of importing the library:
import { z } from 'zod'
import { zx } from '@traversable/zod'
// see below for specific examples
zx.checkzx.check.writeablezx.deepClonezx.deepClone.writeablezx.deepEqualzx.deepEqual.writeablezx.deepEqual.classiczx.convertCaseCodeczx.deepPartialzx.deepPartial.writeablezx.defaultValuezx.fromConstantzx.fromConstant.writeablezx.fromJsonzx.fromJson.writeablezx.toPathszx.toStringzx.toTypezx.deepLoosezx.deepLoose.writeablezx.deepNoDefaultszx.deepNoDefaults.writeablezx.deepNonLoosezx.deepNonLoose.writeablezx.deepNullablezx.deepNullable.writeablezx.deepNonNullablezx.deepNonNullable.writeablezx.deepRequiredzx.deepRequired.writeablezx.deepStrictzx.deepStrict.writeablezx.deepNonStrictzx.deepNonStrict.writeablezx.typeofzx.taggedzx.makeLens (🔬)zx.deepCamelCaseCodec (🔬)zx.deepSnakeCaseCodec (🔬)zx.checkzx.check converts a zod-schema into a super-performant type-guard.
z.parse and z.safeParseFunction constructor, including (as of May 2025) Cloudflare workers 🎉Here's a Bolt sandbox if you'd like to run the benchmarks yourself.
z.parse and z.safeParse clone the object they're parsing, and return an array of issues if any are encountered.
Those features are useful in certain contexts.
But in contexts where all you need is to know whether a value is valid or not, it'd be nice to have a faster alternative, that doesn't allocate.
zx.check takes a zod schema, and returns a type guard. It's performance is an order of magnitude faster than z.parse and z.safeParse in
almost every case.
┌─────────────────┐
│ Average │
┌────────────────────┼─────────────────┤
│ z.parse (v4) │ 20.41x faster │
├────────────────────┼─────────────────┤
│ z.safeParse (v4) │ 21.05x faster │
└────────────────────┴─────────────────┘
import { z } from 'zod'
import { zx } from '@traversable/zod'
const Address = z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
})
const addressCheck = zx.check(Address)
addressCheck({ street1: '221B Baker St', city: 'London' }) // => true
addressCheck({ street1: '221B Baker St' }) // => false
zx.check.writeablezx.check converts a zod-schema into a super-performant type-guard.
Compared to zx.check, zx.check.writeable returns
the check function in stringified ("writeable") form.
import { z } from 'zod'
import { zx } from '@traversable/zod'
const addressCheck = zx.check.writeable(
z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
}),
{ typeName: 'Address' }
)
console.log(addressCheck)
// =>
// type Address = { street1: string; street2?: string; city: string; }
// function check(value: Address) {
// return (
// !!value &&
// typeof value === "object" &&
// typeof value.street1 === "string" &&
// (!Object.hasOwn(value, "street2") || typeof value?.street2 === "string") &&
// typeof value.city === "string"
// );
// }
zx.deepClonezx.deepClone lets users derive a specialized "deep copy" function that works with values that have been already validated.
Because the values have already been validated, clone times are significantly faster than alternatives like window.structuredClone and Lodash.cloneDeep.
Here's a Bolt sandbox if you'd like to run the benchmarks yourself.
┌─────────────────┐
│ (avg) │
┌──────────────────────────┼─────────────────┤
│ Lodash.cloneDeep │ 30.64x faster │
├──────────────────────────┼─────────────────┤
│ window.structuredClone │ 50.26x faster │
└──────────────────────────┴─────────────────┘
This article goes into more detail about what makes zx.deepClone so fast.
import { assert } from 'vitest'
import { z } from 'zod'
import { zx } from '@traversable/zod'
const Address = z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
})
const clone = zx.deepClone(Address)
const sherlock = { street1: '221 Baker St', street2: '#B', city: 'London' }
const harry = { street1: '4 Privet Dr', city: 'Little Whinging' }
const sherlockCloned = clone(sherlock)
const harryCloned = clone(harry)
// values are deeply equal:
assert.deepEqual(sherlockCloned, sherlock) // ✅
assert.deepEqual(harryCloned, harry) // ✅
// values are fresh copies:
assert.notEqual(sherlockCloned, sherlock) // ✅
assert.notEqual(harryCloned, harry) // ✅
zx.deepClone.writeablezx.deepClone lets users derive a specialized "deep clone" function that works with values that have been already validated.
Compared to zx.deepClone, zx.deepClone.writeable returns
the clone function in stringified ("writeable") form.
import { z } from 'zod'
import { zx } from '@traversable/zod'
const Address = z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
})
const deepClone = zx.deepClone.writeable(
z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
}),
{ typeName: 'Address' }
)
console.log(deepClone)
// =>
// type Address = { street1: string; street2?: string; city: string; }
// function deepClone(prev: Address) {
// return {
// street1: prev.street1,
// ...prev.street2 !== undefined && { street2: prev.street2 },
// city: prev.city
// }
// }
zx.deepEqualzx.deepEqual lets users derive a specialized "deep equal" function that works with values that have been already validated.
Because the values have already been validated, comparison times are significantly faster than alternatives like NodeJS.isDeepStrictEqual and Lodash.isEqual.
Here's a Bolt sandbox if you'd like to run the benchmarks yourself.
┌────────────────┬────────────────┐
│ Array (avg) │ Object (avg) │
┌────────────────────────────┼────────────────┼────────────────┤
│ NodeJS.isDeepStrictEqual │ 40.3x faster │ 56.5x faster │
├────────────────────────────┼────────────────┼────────────────┤
│ Lodash.isEqual │ 53.7x faster │ 60.1x faster │
└────────────────────────────┴────────────────┴────────────────┘
This article goes into more detail about what makes zx.deepEqual so fast.
Function constructor, including (as of May 2025) Cloudflare workers 🎉import { z } from 'zod'
import { zx } from '@traversable/zod'
const deepEqual = zx.deepEqual(
z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
})
)
deepEqual(
{ street1: '221B Baker St', city: 'London' },
{ street1: '221B Baker St', city: 'London' }
) // => true
deepEqual(
{ street1: '221B Baker St', city: 'London' },
{ street1: '4 Privet Dr', city: 'Little Whinging' }
) // => false
zx.deepEqual.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const deepEqual = zx.deepEqual.writeable(
z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
}),
{ typeName: 'Address' }
)
console.log(deepEqual)
// =>
// type Address = { street1: string; street2?: string; city: string; }
// function deepEqual(x: Address, y: Address) {
// if (x === y) return true;
// if (x.street1 !== y.street1) return false;
// if (x.street2 !== y.street2) return false;
// if (x.city !== y.city) return false;
// return true;
// }
zx.deepEqual.classicimport { z } from 'zod'
import { zx } from '@traversable/zod'
import * as vi from 'vitest'
const deepEqual = zx.deepEqual.classic(
z.object({
street1: z.string(),
street2: z.optional(z.string()),
city: z.string(),
})
)
deepEqual(
{ street1: '221B Baker St', city: 'London' },
{ street1: '221B Baker St', city: 'London' },
) // => true
deepEqual(
{ street1: '221B Baker St', city: 'London' },
{ street1: '4 Privet Dr', city: 'Little Whinging' },
) // => false
zx.convertCaseCodecConvert a Zod schema into a codec that applies a bi-directional key transformation to all object schemas recursively.
You can play with this example on StackBlitz
import * as z from 'zod'
import { zx } from '@traversable/zod'
const createAllCapsCodec = zx.convertCaseCodec({
decodeKeys: (k) => k.toUpperCase(),
encodeKeys: (k) => k.toLowerCase(),
})
const ALL_CAPS = createAllCapsCodec(
z.object({
abc: z.string(),
def: z.object({
ghi: z.array(
z.object({
jkl: z.boolean()
})
)
})
})
)
console.log(
ALL_CAPS.decode({
abc: 'hi how are you',
def: {
ghi: [
{ jkl: false },
{ jkl: true },
]
}
})
)
/* {
ABC: "hi how are you",
DEF: {
GHI: [
{ "JKL": false },
{ "JKL": true }
]
}
} */
console.log(
ALL_CAPS.encode({
ABC: "hi how are you",
DEF: {
GHI: [
{ "JKL": false },
{ "JKL": true }
]
}
})
)
/* {
abc: 'hi how are you',
def: {
ghi: [
{ jkl: false },
{ jkl: true },
]
}
} */
zx.deepCamelCaseCodecSupport for this feature is experimental (🔬).
Convert a Zod schema into a codec that decodes any objects's keys to camel case and encode any object's keys to snake case, recursively.
This feature was implemented in terms of zx.convertCaseCodec.
You can play with this example on StackBlitz
import * as z from 'zod'
import { zx } from '@traversable/zod'
const CAMEL = zx.deepCamelCaseCodec(
z.object({
abc_def: z.string(),
ghi_jkl: z.object({
mno_pqr: z.number(),
stu_vwx: z.array(
z.object({
y_z: z.boolean()
})
)
})
})
)
console.log(
CAMEL.decode({
abc_def: 'hi how are you',
ghi_jkl: {
mno_pqr: 123,
stu_vwx: [
{
y_z: true
},
{
y_z: false
}
]
}
})
)
/* {
abcDef: "hi how are you",
ghiJkl: {
mnoPqr: 123,
stuVwx: [
{
yZ: true,
},
{
yZ: false,
},
],
},
} */
console.log(
CAMEL.encode({
abcDef: "hi how are you",
ghiJkl: {
mnoPqr: 123,
stuVwx: [
{
yZ: true,
},
{
yZ: false,
},
],
},
})
)
/* {
abc_def: 'hi how are you',
ghi_jkl: {
mno_pqr: 123,
stu_vwx: [
{
y_z: true
},
{
y_z: false
}
]
}
} */
zx.deepSnakeCaseCodecSupport for this feature is experimental (🔬).
Convert a Zod schema into a codec that decodes any objects's keys to snake case and encode any object's keys to camel case, recursively.
This feature was implemented in terms of zx.convertCaseCodec.
You can play with this example on StackBlitz
import * as z from 'zod'
import { zx } from '@traversable/zod'
const SNAKE = zx.deepSnakeCaseCodec(
z.object({
abc_def: z.string(),
ghi_jkl: z.object({
mno_pqr: z.number(),
stu_vwx: z.array(
z.object({
y_z: z.boolean()
})
)
})
})
)
console.log(
SNAKE.decode({
abcDef: "hi how are you",
ghiJkl: {
mnoPqr: 123,
stuVwx: [
{
yZ: true,
},
{
yZ: false,
},
],
},
})
)
/* {
abc_def: 'hi how are you',
ghi_jkl: {
mno_pqr: 123,
stu_vwx: [
{
y_z: true
},
{
y_z: false
}
]
}
} */
console.log(
SNAKE.encode({
abc_def: 'hi how are you',
ghi_jkl: {
mno_pqr: 123,
stu_vwx: [
{
y_z: true
},
{
y_z: false
}
]
}
})
)
/* {
abcDef: "hi how are you",
ghiJkl: {
mnoPqr: 123,
stuVwx: [
{
yZ: true,
},
{
yZ: false,
},
],
},
} */
zx.fromConstantConvert a blob of JSON data into a zod schema that represents its least upper bound.
import { zx } from '@traversable/zod'
let example = zx.fromConstant({ abc: 'ABC', def: [1, 2, 3] })
// ^? let example: z.ZodType<{ abc: 'ABC', def: [1, 2, 3] }>
console.log(zx.toString(example))
// => z.object({ abc: z.literal("ABC"), def: z.tuple([ z.literal(1), z.literal(2), z.literal(3) ]) })
zx.fromConstant.writeableConvert a blob of JSON data into a stringified zod schema that represents its least upper bound.
import { zx } from '@traversable/zod'
let ex_01 = zx.fromConstant.writeable({ abc: 'ABC', def: [1, 2, 3] })
console.log(ex_01)
// => z.object({ abc: z.literal("ABC"), def: z.tuple([ z.literal(1), z.literal(2), z.literal(3) ]) })
zx.fromJsonConvert a blob of JSON data into a zod schema that represents its greatest lower bound.
import type { z } from 'zod'
import { zx } from '@traversable/zod'
let ex_01 = zx.fromJson({ abc: 'ABC', def: [] })
// ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.ZodUnknown> }>
console.log(zx.toString(ex_01))
// => z.object({ abc: z.string(), def: z.array(z.unknown()) })
let ex_02 = zx.fromJson({ abc: 'ABC', def: [123] })
// ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.ZodUnknown> }>
console.log(zx.toString(ex_02))
// => z.object({ abc: z.string(), def: z.array(z.number()) })
let ex_03 = zx.fromJson({ abc: 'ABC', def: [123, null]})
// ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.Union<[z.ZodNumber, z.ZodNull]>> }>
console.log(zx.toString(ex_03))
// => z.object({ abc: z.string(), def: z.array(z.union([z.number(), z.null()])) })
zx.fromJson.writeableConvert a blob of JSON data into a stringified Zod schema that represents its greatest lower bound.
import type { z } from 'zod'
import { zx } from '@traversable/zod'
let ex_01 = zx.fromJson.writeable({ abc: 'ABC', def: [] })
console.log(ex_01)
// => z.object({ abc: z.string(), def: z.array(z.unknown()) })
let ex_02 = zx.fromJson.writeable({ abc: 'ABC', def: [123] })
console.log(ex_02)
// => z.object({ abc: z.string(), def: z.array(z.number()) })
let ex_03 = zx.fromJson.writeable({ abc: 'ABC', def: [123, null]})
console.log(ex_03)
// => z.object({ abc: z.string(), def: z.array(z.union([z.number(), z.null()])) })
zx.deepPartialCredit goes to @jaens for their work to detect circular schemas and prevent stack overflow.
import { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepPartial(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))
type MySchema = z.infer<typeof MySchema>
// ^? type MySchema = { a?: number, b?: { c?: string } }
zx.deepPartial.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({ a: z.number(), b: z.object({ c: z.string() }) })
console.log(zx.deepPartial.writeable(MySchema))
// =>
// z.object({
// a: z.number().optional(),
// b: z.object({
// c: z.string().optional(),
// d: z.array(z.boolean()).optional()
// }).optional()
// }).optional()
zx.defaultValuezx.defaultValues converts a Zod schema into a "default value' that respects the structure of the schema.
A common use case for zx.defaultValue is creating default values for forms.
By default, zx.defaultValue does not make any assumptions about what "default" means for primitive types,
which is why it returns undefined when it encounters a leaf value. This behavior is configurable.
import { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number(),
b: z.object({
c: z.string(),
d: z.array(z.boolean())
})
})
// by default, primitives are initialized as `undefined`:
const defaultOne = zx.defaultValue(MySchema)
console.log(defaultOne) // => { a: undefined, b: { c: undefined, d: [] } }
// to configure this behavior, use the `fallbacks` property:
const defaultTwo = zx.defaultValue(MySchema, { fallbacks: { number: 0, string: '' } })
console.log(defaultTwo) // => { a: 0, b: { c: '', d: [] } }
zx.toPathszx.toPaths converts a zod schema into an array of "paths" that represent the schema.
import { z } from 'zod'
import { zx } from '@traversable/zod'
console.log(
zx.toPaths(z.object({ a: z.object({ c: z.string() }), b: z.number() }))
) // => [["a", "c"], ["b"]]
zx.toStringConvert a Zod schema into a string that constructs the same zod schema.
Useful for writing/debugging tests that involve randomly generated schemas.
import { z } from 'zod'
import { zx } from '@traversable/zod'
console.log(
zx.toString(
z.templateLiteral([1n])
)
) // => z.templateLiteral([1n])
console.log(
zx.toString(
z.map(z.array(z.boolean()), z.set(z.number().optional()))
)
) // => z.map(z.array(z.boolean()), z.set(z.number().optional()))
console.log(
zx.toString(
z.tuple([
z.number().min(0).lt(2),
z.number().multipleOf(2).nullable(),
])
)
) // => z.tuple([z.number().min(0).lt(2), z.number().multipleOf(2).nullable()])
zx.toTypeConvert a Zod schema into a string that represents its type.
To preserve JSDoc annotations for object properties, pass preserveJsDocs: true in the options object.
If the property's metadata includes an example property, the example will be escaped and included
as an @escape tag.
By default, the type will be returned as an "inline" type.
To give the type a name, use the typeName option.
import { z } from 'zod'
import { zx } from '@traversable/zod'
console.log(
zx.toType(
z.object({
a: z.optional(z.literal(1)),
b: z.literal(2),
c: z.optional(z.literal(3))
})
)
) // => { a?: 1, b: 2, c?: 3 }
console.log(
zx.toType(
z.intersection(
z.object({ a: z.literal(1) }),
z.object({ b: z.literal(2) })
)
)
) // => { a: 1 } & { b: 2 }
console.log(
zx.toType(
z.templateLiteral([
z.literal(['a', 'b']),
' ',
z.literal(['c', 'd']),
' ',
z.literal(['e', 'f'])
])
)
) // => "a c e" | "a c f" | "a d e" | "a d f" | "b c e" | "b c f" | "b d e" | "b d f"
// To give the generated type a name, use the `typeName` option:
console.log(
zx.toType(
z.object({ a: z.optional(z.number()) }),
{ typeName: 'MyType' }
)
) // => type MyType = { a?: number }
// To preserve JSDoc annotations, use the `preserveJsDocs` option:
console.log(
zx.toType(
z.object({
street1: z.string().meta({ describe: 'Street 1 name' }),
street2: z.string().optional().meta({ describe: 'Street 2 name', example: 'Unit B' }),
city: z.string(),
}),
{ typeName: 'Address', preserveJsDocs: true }
)
)
// =>
// type Address = {
// /**
// * Street 1 name
// */
// street1: string
// /**
// * Street 2 name
// * @example "Unit B"
// */
// street2?: string
// city: string
// }
zx.deepNoDefaultsRecursively removes any z.default nodes.
Unless you opt out, if the node is an object property, the property will be wrapped with z.optional.
To opt out, pass { replaceWithOptional: false } as the second argument to zx.deepNoDefaults.
import { z } from 'zod'
import { zx } from "@traversable/zod"
const withoutDefaults = zx.deepNoDefaults(
z.object({
a: z.number().default(0),
b: z.boolean().default(false).optional(),
c: z.boolean().optional().default(false),
d: z.union([z.string().default(''), z.number().default(0)]),
e: z.array(
z.object({
f: z.number().default(0),
g: z.boolean().default(false).optional(),
h: z.boolean().optional().default(false),
i: z.union([z.string().default(''), z.number().default(0)]),
}).default({
f: 0,
g: false,
h: false,
i: '',
})
).default([])
})
)
console.log(
zx.toString(withoutDefaults)
)
// =>
// z.object({
// a: z.number().optional(),
// b: z.boolean().optional(),
// c: z.boolean().optional(),
// d: z.union([z.string(), z.number()]).optional(),
// e: z
// .array(
// z.object({
// f: z.number().optional(),
// g: z.boolean().optional(),
// h: z.boolean().optional(),
// i: z.union([z.string(), z.number()]).optional(),
// }),
// )
// .optional(),
// })
zx.deepNoDefaults.writeableRecursively removes any z.default nodes, and returns the transformed schema in string form.
Unless you opt out, if the node is an object property, the property will be wrapped with z.optional.
To opt out, pass { replaceWithOptional: false } as the second argument to zx.deepNoDefaults.
import { z } from 'zod'
import { zx } from "@traversable/zod"
const withoutDefaults = zx.deepNoDefaults.writeable(
z.object({
a: z.number().default(0),
b: z.boolean().default(false).optional(),
c: z.boolean().optional().default(false),
d: z.union([z.string().default(''), z.number().default(0)]),
e: z.array(
z.object({
f: z.number().default(0),
g: z.boolean().default(false).optional(),
h: z.boolean().optional().default(false),
i: z.union([z.string().default(''), z.number().default(0)]),
}).default({
f: 0,
g: false,
h: false,
i: '',
})
).default([])
})
)
console.log(withoutDefaults)
// =>
// z.object({
// a: z.number().optional(),
// b: z.boolean().optional(),
// c: z.boolean().optional(),
// d: z.union([z.string(), z.number()]).optional(),
// e: z
// .array(
// z.object({
// f: z.number().optional(),
// g: z.boolean().optional(),
// h: z.boolean().optional(),
// i: z.union([z.string(), z.number()]).optional(),
// }),
// )
// .optional(),
// })
zx.deepLooseimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepLoose(
z.object({
a: z.number(),
b: z.object({
c: z.string()
})
})
)
zx.deepLoose.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number(),
b: z.object({
c: z.string()
})
})
console.log(zx.deepLoose.writeable(MySchema))
// =>
// z.looseObject({
// a: z.number(),
// b: z.looseObject({
// c: z.string()
// })
// })
zx.deepNonLooseimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepNonLoose(
z.looseObject({
a: z.number(),
b: z.looseObject({
c: z.string()
})
})
)
zx.deepNonLoose.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.looseObject({
a: z.number(),
b: z.looseObject({
c: z.string()
})
})
console.log(zx.deepNonLoose.writeable(MySchema))
// =>
// z.object({
// a: z.number(),
// b: z.object({
// c: z.string()
// })
// })
zx.deepRequiredimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepRequired(z.object({ a: z.number().optional(), b: z.object({ c: z.string().optional() }) }))
type MySchema = z.infer<typeof MySchema>
// ^? type MySchema = { a: number, b: { c: string } }
zx.deepRequired.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number().optional(),
b: z.optional(
z.object({
c: z.string(),
d: z.array(z.boolean()).optional()
})
)
})
console.log(zx.deepRequired.writeable(MySchema))
// =>
// z.object({
// a: z.number(),
// b: z.object({
// c: z.string(),
// d: z.array(z.boolean())
// })
// })
zx.deepNullableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepNullable(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))
type MySchema = z.infer<typeof MySchema>
// ^? type MySchema = { a: number | null, b: { c: string | null } | null }
zx.deepNullable.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number(),
b: z.object({
c: z.string(),
d: z.array(z.boolean())
})
})
console.log(zx.deepNullable.writeable(MySchema))
// =>
// z.object({
// a: z.number().nullable(),
// b: z.object({
// c: z.string().nullable(),
// d: z.array(z.boolean()).nullable()
// }).nullable()
// })
zx.deepNonNullableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepNonNullable(
z.object({
a: z.number().nullable(),
b: z.object({
c: z.string().nullable(),
}),
})
)
type MySchema = z.infer<typeof MySchema>
// ^? type MySchema = { a: number, b: { c: string } }
zx.deepNonNullable.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number().nullable(),
b: z.object({
c: z.string().nullable(),
})
})
console.log(zx.deepNonNullable.writeable(MySchema))
// =>
// z.object({
// a: z.number(),
// b: z.object({
// c: z.string(),
// })
// })
zx.deepReadonlyimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepReadonly(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))
type MySchema = z.infer<typeof MySchema>
// ^? type MySchema = { readonly a: number, readonly b: { readonly c: string } }
zx.deepReadonly.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({ a: z.number(), b: z.object({ c: z.string() }) })
console.log(zx.deepReadonly.writeable(MySchema))
// =>
// z.object({
// a: z.number().readonly(),
// b: z.object({
// c: z.string().readonly()
// }).readonly()
// }).readonly()
zx.deepStrictimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepStrict(
z.object({
a: z.number(),
b: z.object({
c: z.string()
})
})
)
zx.deepStrict.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.object({
a: z.number(),
b: z.object({
c: z.string()
})
})
console.log(zx.deepStrict.writeable(MySchema))
// =>
// z.strictObject({
// a: z.number(),
// b: z.strictObject({
// c: z.string()
// })
// })
zx.deepNonStrictimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = zx.deepNonStrict(
z.strictObject({
a: z.number(),
b: z.strictObject({
c: z.string()
})
})
)
zx.deepNonStrict.writeableimport { z } from 'zod'
import { zx } from '@traversable/zod'
const MySchema = z.strictObject({
a: z.number(),
b: z.strictObject({
c: z.string()
})
})
console.log(zx.deepNonStrict.writeable(MySchema))
// =>
// z.object({
// a: z.number(),
// b: z.object({
// c: z.string()
// })
// })
zx.typeofzx.typeof returns the "type" (or tag) of a Zod schema.
import { z } from 'zod'
import { zx } from '@traversable/zod'
console.log(zx.typeof(z.string())) // => "string"
zx.taggedzx.tagged lets you construct a type-guard that identifies the type of Zod schema you have.
import { z } from 'zod'
import { zx } from '@traversable/zod'
zx.tagged('object', z.object({})) // true
zx.tagged('array', z.string()) // false
zx.makeLens
zx.makeLens still experimental (🔬). Use in production with care.
zx.makeLens accepts a zod schema (classic, v4) as its first argument, and a
"selector function" as its second argument.
An optic is a generalization of a lens, but since most people use "lens" to refer to optics generally, they are sometimes used interchangeably in this document.
With zx.makeLens, you use a selector function to build up an optic via a series of property accesses.
Let's look at a few examples to make things more concrete.
For our first example, let's create a lens that focuses on a structure's "a[0]" path:
import { z } from 'zod'
import { zx } from '@traversable/zod'
//////////////////////////
/// example #1: Lens ///
//////////////////////////
const Schema = z.object({ a: z.tuple([z.string(), z.bigint()]) })
// Use autocompletion to "select" what you want to focus:
// ↆↆↆↆↆↆ
const Lens = zx.makeLens(Schema, $ => $.a[0])
Lens
// ^? const Lens: zx.Lens<{ a: [string, bigint] }, string>
// 𐙘___________________𐙘 𐙘____𐙘
// structure focus
// Lenses have 3 properties:
///////////////
// #1:
// Lens.get -- Given a structure,
// returns the focus
const ex_01 = Lens.get({ a: ['hi', 0n] })
// 𐙘_____________𐙘
// structure
console.log(ex_01) // => "hi"
// 𐙘𐙘
// focus
///////////////
// #2:
// Lens.set -- Given a new focus and a structure,
// sets the new focus & returns the structure
const ex_02 = Lens.set(`hey, ho, let's go`, { a: ['', 0n] })
// 𐙘_______________𐙘 𐙘___________𐙘
// new focus structure
console.log(ex_02) // => { a: ["hey, ho, let's go", 0n] }
// 𐙘_______________𐙘
// new focus
/////////////////
// #3:
// Lens.modify -- Given a "modify" callback and a structure,
// applies the callback to the focus & returns the structure
const ex_03 = Lens.modify((str) => str.toUpperCase(), { a: [`hey, ho`, 0n] })
// 𐙘_______________________𐙘 𐙘__________________𐙘
// callback structure
console.log(ex_03) // => { a: ["HEY, HO", 0n] }
// 𐙘_____𐙘
// new focus
// Note that if your callback changes the focus type,
// that will be reflected in the return type as well:
const ex_04 = Lens.modify((str) => str.length > 0, { a: ['', 0n] })
// 𐙘____________________𐙘 𐙘___________𐙘
// callback structure
console.log(ex_04) // => { a: [false, 0n] }
// ^? const ex_04: { a: [boolean, bigint] }
// 𐙘_____𐙘
// new focus
When you use zx.makeLens on a union type, you get back a different kind
of lens called a prism.
Let's see how prisms differ from lenses:
import { z } from 'zod'
import { zx } from '@traversable/zod'
///////////////////////////
/// example #2: Prism ///
///////////////////////////
const Schema = z.union([
z.object({ tag: z.literal('ONE'), ghi: z.number() }),
z.object({ tag: z.literal('TWO') })
])
// Let's focus on the first union member's "ghi" property.
// If a discriminant can be inferred, autocompletion allows
// you to select that member by its discriminant,
// prefixed by `ꖛ`:
//
// ↆↆↆↆↆ
const Prism = zx.makeLens(Schema, $ => $.ꖛONE.ghi)
Prism
// ^? Prism: zx.Prism<{ tag: "ONE", ghi: number } | { tag: "TWO" }, number | undefined>
// 𐙘________________________________________𐙘 𐙘________________𐙘
// structure focus
// Prisms have the same 3 properties as lenses,
// but they behave like **pattern matchers**
// instead of _property accessors_
///////////////
// #1:
// Prism.get -- Given a matching structure,
// returns the focus
const ex_01 = Prism.get({ tag: 'ONE', ghi: 123 })
// 𐙘____________________𐙘
// structure
console.log(ex_01) // => 123
// 𐙘𐙘𐙘
// focus
// Prism.get -- If the match fails,
// returns undefined
const ex_02 = Prism.get({ tag: 'TWO' })
// 𐙘___________𐙘
// structure
console.log(ex_02) // => undefined
// 𐙘𐙘𐙘
// no match
///////////////
// #2:
// Prism.set -- Given a new focus and a matching structure,
// sets the new focus & returns the structure
const ex_03 = Prism.set(9_000, { tag: 'ONE', ghi: 123 })
// 𐙘___𐙘 𐙘____________________𐙘
// new focus structure
console.log(ex_03) // => { tag: 'ONE', ghi: 9000 }
// 𐙘__𐙘
// new focus
// Prism.set -- If the match fails,
// returns the structure unchanged
const ex_04 = Prism.set(9000, { tag: 'TWO' })
console.log(ex_04) // => { tag: 'TWO' }
// 𐙘__________𐙘
// no match
//////////////////
// #3:
// Prism.modify -- Given a "modify" callback and a matching structure,
// applies the callback to the focus & returns the structure
// Just like with lenses, if your callback changes the focus type,
// that will be reflected in the return type:
const ex_05 = Prism.modify((n) => [n, n], { tag: 'ONE', ghi: 123 })
// 𐙘___________𐙘 𐙘____________________𐙘
// callback structure
console.log(ex_05) // => { tag: 'ONE', ghi: [123, 123] }
// ^? const ex_05: { tag: "ONE", ghi: number[] } | { tag: "TWO" }
// Prism.modify -- If the match fails,
// returns the structure unchanged
const ex_06 = Prism.modify((n) => n + 1, { tag: 'TWO' })
// 𐙘__________𐙘 𐙘___________𐙘
// callback structure
console.log(ex_06) // => { tag: 'TWO' }
// ^? const ex_06: { tag: "ONE", ghi: number } | { tag: "TWO" }
When you use zx.makeLens on a collection type (such as z.array or z.record),
you get back a different kind of lens called a traversal.
Let's see how traversals differ from lenses and prisms:
import { z } from 'zod'
import { zx } from '@traversable/zod'
///////////////////////////////
/// example #3: Traversal ///
///////////////////////////////
const Schema = z.object({
a: z.array(
z.object({
b: z.number(),
c: z.string()
})
)
})
// Let's focus on the `"b"` property of each of the elements of the structure's `"a"` property:
// To indicate that you want to traverse the array,
// autocomplete the `ᣔꓸꓸ` field:
// ↆↆ
const Traversal = zx.makeLens(Schema, $ => $ => $.a.ᣔꓸꓸ.b)
Traversal
// ^? Traversal: zx.Traversal<{ a: { b: number, c: string }[] }, number>
// 𐙘_____________________________𐙘 𐙘____𐙘
// structure focus
// Traversals have the same 3 properties as lenses and prisms,
// but they behave like **for-of loops**
// instead of _property accessors_ or _patterns matchers_
///////////////
// #1:
// Traversal.get -- Given a matching structure,
// returns all of the focuses
const ex_01 = Traversal.get({ a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
// 𐙘_____________________________________𐙘
// structure
console.log(ex_01) // => [0, 1]
// 𐙘__𐙘
// focus
///////////////
// #2:
// Traversal.set -- Given a new focus and a matching structure, sets all of the elements
// of the collection to the new focus & returns the structure
const ex_02 = Traversal.set(9_000, { a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
// 𐙘___𐙘 𐙘_____________________________________𐙘
// new focus structure
console.log(ex_02) // => { a: [{ b: 9000, c: '' }, { b: 9000, c: '' }] }
// 𐙘__𐙘 𐙘__𐙘
// new focus new focus
//////////////////
// #3:
// Traversal.modify -- Given a "modify" callback and a matching structure,
// applies the callback to _each_ focus & returns the structure
// Just like with lenses & prisms, if your callback changes the focus type,
// that will be reflected in the return type:
const ex_03 = Traversal.modify((n) => [n, n + 1], { a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
// 𐙘______________𐙘 𐙘_____________________________________𐙘
// callback structure
console.log(ex_03) // => { a: [{ b: [0, 1], c: '' }, { b: [1, 2], c: '' }] }
// ^? const ex_03: { a: { b: number[], c: string }[] }
// 𐙘______𐙘
// new focus
zx.fold
zx.fold is an advanced API.
Use zx.fold to define a recursive traversal of a Zod schema. Useful when building a schema rewriter.
zx.fold is a powertool. Most of @traversable/zod uses zx.fold under the hood.
Compared to the rest of the library, it's fairly "low-level", so unless you're doing something more advanced you probably won't need to use it directly.
Let's write a schema rewriter that takes an arbitrary Zod schema, and applies a custom transformation to only z.string schemas. For this contrived example, we'll be converting string values to uppercase.
You can play with this example on StackBlitz
import * as z from 'zod'
import { zx } from '@traversable/zod'
function rewriter<T extends z.ZodType>(type: T): T
function rewriter<T>(type: z.ZodType<T>) {
return fold<z.ZodType>((x) => {
switch (true) {
case zx.tagged('string')(x): return x.transform((v) => v.toUpperCase())
default: return z.clone(x as z.ZodType, x._zod.def as z.core.$ZodTypeDef)
}
})(type)
}
const Ex01 = rewriter(z.uuid())
// ^? const Ex01: z.ZodUUID
console.log(Ex01.parse('fdbe3218-bba3-4cf9-95d6-0a0a3770fb64'))
// => "FDBE3218-BBA3-4CF9-95D6-0A0A3770FB64"
const Ex02 = rewriter(z.object({ id: z.uuid() }))
// ^? const Ex02: z.ZodObject<{ id: z.ZodUUID }>
console.log(Ex02.parse({ id: '012f33de-023b-414e-a0a8-0ff9e1e53545' }))
// => { "id": "012F33DE-023B-414E-A0A8-0FF9E1E53545" }
Notice the use of z.clone: this is only necessary when your target is also a Zod schema. This is to ensure that none of the schema's class properties are lost in the traversal.
Thanks to @Refzlund for suggesting that we add this example to the docs!
Let's write a function that takes an arbitrary Zod schema, and generates mock data that satisfies the schema (a.k.a. a "faker").
You can play with this example on StackBlitz
import { z } from 'zod/v4'
import { F, tagged } from '@traversable/zod-types'
import { faker } from '@faker-js/faker'
type Fake = () => unknown
const fake = F.fold<Fake>((x) => {
// 𐙘__𐙘 this type parameter fills in the "holes" below
switch (true) {
case tagged('array')(x): return () => faker.helpers.multiple(
() => x._zod.def.element()
// ^? method element: Fake
// 𐙘__𐙘
)
case tagged('never')(x): return () => void 0
case tagged('unknown')(x): return () => void 0
case tagged('any')(x): return () => void 0
case tagged('void')(x): return () => void 0
case tagged('null')(x): return () => null
case tagged('undefined')(x): return () => undefined
case tagged('nan')(x): return () => NaN
case tagged('boolean')(x): return () => faker.datatype.boolean()
case tagged('symbol')(x): return () => Symbol()
case tagged('int')(x): return () => faker.number.int()
case tagged('bigint')(x): return () => faker.number.bigInt()
case tagged('number')(x): return () => faker.number.float()
case tagged('string')(x): return () => faker.lorem.words()
case tagged('date')(x): return () => faker.date.recent()
case tagged('literal')(x): return () => faker.helpers.arrayElement(x._zod.def.values)
case tagged('template_literal')(x): return () => faker.helpers.fromRegExp(x._zod.pattern)
case tagged('enum')(x): return () => faker.helpers.arrayElement(Array.from(x._zod.values))
case tagged('nonoptional')(x): return x._zod.def.innerType
case tagged('nullable')(x): return x._zod.def.innerType
case tagged('optional')(x): return x._zod.def.innerType
case tagged('readonly')(x): return x._zod.def.innerType
case tagged('catch')(x): return x._zod.def.innerType
case tagged('default')(x): return x._zod.def.innerType
case tagged('prefault')(x): return x._zod.def.innerType
case tagged('success')(x): return x._zod.def.innerType
case tagged('pipe')(x): return x._zod.def.out
case tagged('lazy')(x): return x._zod.def.getter()
case tagged('promise')(x): return x._zod.def.innerType
case tagged('set')(x): return () => new Set([x._zod.def.valueType()])
case tagged('map')(x): return () => new Map([[x._zod.def.keyType(), x._zod.def.valueType()]])
case tagged('intersection')(x): return () => Object.assign({}, x._zod.def.left(), x._zod.def.right())
case tagged('union')(x): return () => faker.helpers.arrayElement(x._zod.def.options.map((option) => option()))
case tagged('tuple')(x): return () => x._zod.def.items.map((item) => item())
case tagged('record')(x): return () => Object.fromEntries([[x._zod.def.keyType(), x._zod.def.valueType()]])
case tagged('object')(x): return () => Object.fromEntries(Object.entries(x._zod.def.shape).map(([k, v]) => [k, v()]))
case tagged('file')(x): return () => new File(faker.lorem.lines(10).split('\n'), faker.system.commonFileName())
case tagged('custom')(x): { throw Error('Unsupported schema: z.custom') }
case tagged('transform')(x): { throw Error('Unsupported schema: z.transform') }
default: { x satisfies never; throw Error('Illegal state') }
// 𐙘_______________𐙘
// exhaustiveness check works
}
})
// Let's test it out:
const mock = fake(
z.object({
abc: z.array(z.string()),
def: z.optional(
z.tuple([
z.number(),
z.boolean()
])
)
})
)
console.log(mock())
// => {
// abc: [
// 'annus iure consequatur',
// 'aer suus autem',
// 'delectus patrocinor deporto',
// 'benevolentia tonsor odit',
// 'stabilis dolor tres',
// 'mollitia quibusdam vociferor'
// ],
// def: [-882, false]
// }
zx.Functor
zx.Functor is an advanced API
zx.Functor is the primary abstraction that powers @traversable/zod.
zx.Functor is a powertool. Most of @traversable/zod uses zx.Functor under the hood.
Compared to the rest of the library, it's fairly "low-level", so unless you're doing something pretty advanced you probably won't need to use it directly.