@traversable/schema
    Preparing search index...

    Module @traversable/zod - v0.0.20


    ᯓ𝘁𝗿𝗮𝘃𝗲𝗿𝘀𝗮𝗯𝗹𝗲/𝘇𝗼𝗱


    @traversable/zod or zx is a schema rewriter for zod.

    NPM Version   TypeScript   License   npm  
    Static Badge   Static Badge   Static Badge  


    @traversable/zod has a peer dependency on zod (v4).

    $ pnpm add @traversable/zod zod
    

    Here's an example of importing the library:

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    // see below for specific examples

    zx.check converts a zod-schema into a super-performant type-guard.

    • Better performance than z.parse and z.safeParse
    • Works in any environment that supports defining functions using the Function constructor, including (as of May 2025) Cloudflare workers 🎉

    Here's a Bolt sandbox if you'd like to run the benchmarks yourself.

    z.parse and z.safeParse clone the object they're parsing, and return an array of issues if any are encountered.

    Those features are useful in certain contexts.

    But in contexts where all you need is to know whether a value is valid or not, it'd be nice to have a faster alternative, that doesn't allocate.

    zx.check takes a zod schema, and returns a type guard. It's performance is an order of magnitude faster than z.parse and z.safeParse in almost every case.

                         ┌─────────────────┐
    Average
    ┌────────────────────┼─────────────────┤
    z.parse (v4) │ 20.41x faster
    ├────────────────────┼─────────────────┤
    z.safeParse (v4) │ 21.05x faster
    └────────────────────┴─────────────────┘
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const Address = z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    })

    const addressCheck = zx.check(Address)

    addressCheck({ street1: '221B Baker St', city: 'London' }) // => true
    addressCheck({ street1: '221B Baker St' }) // => false

    zx.check converts a zod-schema into a super-performant type-guard.

    Compared to zx.check, zx.check.writeable returns the check function in stringified ("writeable") form.

    • Useful when you're consuming a set of zod schemas and writing them all to disc
    • Also useful for testing purposes or for troubleshooting, since it gives you a way to "see" exactly what the check functions check
    • Since you're presumably writing to disc a build-time, works with Cloudflare workers
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const addressCheck = zx.check.writeable(
    z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    }),
    { typeName: 'Address' }
    )

    console.log(addressCheck)
    // =>
    // type Address = { street1: string; street2?: string; city: string; }
    // function check(value: Address) {
    // return (
    // !!value &&
    // typeof value === "object" &&
    // typeof value.street1 === "string" &&
    // (!Object.hasOwn(value, "street2") || typeof value?.street2 === "string") &&
    // typeof value.city === "string"
    // );
    // }

    zx.deepClone lets users derive a specialized "deep copy" function that works with values that have been already validated.

    Because the values have already been validated, clone times are significantly faster than alternatives like window.structuredClone and Lodash.cloneDeep.

    Here's a Bolt sandbox if you'd like to run the benchmarks yourself.

                               ┌─────────────────┐
    │ (avg) │
    ┌──────────────────────────┼─────────────────┤
    Lodash.cloneDeep │ 30.64x faster
    ├──────────────────────────┼─────────────────┤
    window.structuredClone │ 50.26x faster
    └──────────────────────────┴─────────────────┘

    This article goes into more detail about what makes zx.deepClone so fast.

    import { assert } from 'vitest'
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const Address = z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    })

    const clone = zx.deepClone(Address)

    const sherlock = { street1: '221 Baker St', street2: '#B', city: 'London' }
    const harry = { street1: '4 Privet Dr', city: 'Little Whinging' }

    const sherlockCloned = clone(sherlock)
    const harryCloned = clone(harry)

    // values are deeply equal:
    assert.deepEqual(sherlockCloned, sherlock) // ✅
    assert.deepEqual(harryCloned, harry) // ✅

    // values are fresh copies:
    assert.notEqual(sherlockCloned, sherlock) // ✅
    assert.notEqual(harryCloned, harry) // ✅

    zx.deepClone lets users derive a specialized "deep clone" function that works with values that have been already validated.

    Compared to zx.deepClone, zx.deepClone.writeable returns the clone function in stringified ("writeable") form.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const Address = z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    })

    const deepClone = zx.deepClone.writeable(
    z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    }),
    { typeName: 'Address' }
    )

    console.log(deepClone)
    // =>
    // type Address = { street1: string; street2?: string; city: string; }
    // function deepClone(prev: Address) {
    // return {
    // street1: prev.street1,
    // ...prev.street2 !== undefined && { street2: prev.street2 },
    // city: prev.city
    // }
    // }

    zx.deepEqual lets users derive a specialized "deep equal" function that works with values that have been already validated.

    Because the values have already been validated, comparison times are significantly faster than alternatives like NodeJS.isDeepStrictEqual and Lodash.isEqual.

    Here's a Bolt sandbox if you'd like to run the benchmarks yourself.

                                 ┌────────────────┬────────────────┐
    Array (avg) │ Object (avg) │
    ┌────────────────────────────┼────────────────┼────────────────┤
    NodeJS.isDeepStrictEqual │ 40.3x faster │ 56.5x faster
    ├────────────────────────────┼────────────────┼────────────────┤
    Lodash.isEqual │ 53.7x faster │ 60.1x faster
    └────────────────────────────┴────────────────┴────────────────┘

    This article goes into more detail about what makes zx.deepEqual so fast.

    • Works in any environment that supports defining functions using the Function constructor, including (as of May 2025) Cloudflare workers 🎉
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const deepEqual = zx.deepEqual(
    z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    })
    )

    deepEqual(
    { street1: '221B Baker St', city: 'London' },
    { street1: '221B Baker St', city: 'London' }
    ) // => true

    deepEqual(
    { street1: '221B Baker St', city: 'London' },
    { street1: '4 Privet Dr', city: 'Little Whinging' }
    ) // => false
    • Useful when you're consuming a set of zod schemas and writing them all to disc
    • Also useful for testing purposes or for troubleshooting, since it gives you a way to "see" exactly what the deep equal functions are doing
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const deepEqual = zx.deepEqual.writeable(
    z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    }),
    { typeName: 'Address' }
    )

    console.log(deepEqual)
    // =>
    // type Address = { street1: string; street2?: string; city: string; }
    // function deepEqual(x: Address, y: Address) {
    // if (x === y) return true;
    // if (x.street1 !== y.street1) return false;
    // if (x.street2 !== y.street2) return false;
    // if (x.city !== y.city) return false;
    // return true;
    // }
    • This option is provided as a fallback in case users cannot work with either #1 or #2
    import { z } from 'zod'
    import { zx } from '@traversable/zod'
    import * as vi from 'vitest'

    const deepEqual = zx.deepEqual.classic(
    z.object({
    street1: z.string(),
    street2: z.optional(z.string()),
    city: z.string(),
    })
    )

    deepEqual(
    { street1: '221B Baker St', city: 'London' },
    { street1: '221B Baker St', city: 'London' },
    ) // => true

    deepEqual(
    { street1: '221B Baker St', city: 'London' },
    { street1: '4 Privet Dr', city: 'Little Whinging' },
    ) // => false

    Convert a blob of JSON data into a zod schema that represents its least upper bound.

    import { zx } from '@traversable/zod'

    let example = zx.fromConstant({ abc: 'ABC', def: [1, 2, 3] })
    // ^? let example: z.ZodType<{ abc: 'ABC', def: [1, 2, 3] }>

    console.log(zx.toString(example))
    // => z.object({ abc: z.literal("ABC"), def: z.tuple([ z.literal(1), z.literal(2), z.literal(3) ]) })

    Convert a blob of JSON data into a stringified zod schema that represents its least upper bound.

    import { zx } from '@traversable/zod'

    let ex_01 = zx.fromConstant.writeable({ abc: 'ABC', def: [1, 2, 3] })

    console.log(ex_01)
    // => z.object({ abc: z.literal("ABC"), def: z.tuple([ z.literal(1), z.literal(2), z.literal(3) ]) })

    Convert a blob of JSON data into a zod schema that represents its greatest lower bound.

    import type { z } from 'zod'
    import { zx } from '@traversable/zod'

    let ex_01 = zx.fromJson({ abc: 'ABC', def: [] })
    // ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.ZodUnknown> }>

    console.log(zx.toString(ex_01))
    // => z.object({ abc: z.string(), def: z.array(z.unknown()) })

    let ex_02 = zx.fromJson({ abc: 'ABC', def: [123] })
    // ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.ZodUnknown> }>

    console.log(zx.toString(ex_02))
    // => z.object({ abc: z.string(), def: z.array(z.number()) })

    let ex_03 = zx.fromJson({ abc: 'ABC', def: [123, null]})
    // ^? let ex_01: z.ZodObject<{ abc: z.ZodString, def: z.ZodArray<z.Union<[z.ZodNumber, z.ZodNull]>> }>

    console.log(zx.toString(ex_03))
    // => z.object({ abc: z.string(), def: z.array(z.union([z.number(), z.null()])) })

    Convert a blob of JSON data into a stringified zod schema that represents its greatest lower bound.

    import type { z } from 'zod'
    import { zx } from '@traversable/zod'

    let ex_01 = zx.fromJson.writeable({ abc: 'ABC', def: [] })

    console.log(ex_01)
    // => z.object({ abc: z.string(), def: z.array(z.unknown()) })

    let ex_02 = zx.fromJson.writeable({ abc: 'ABC', def: [123] })

    console.log(ex_02)
    // => z.object({ abc: z.string(), def: z.array(z.number()) })

    let ex_03 = zx.fromJson.writeable({ abc: 'ABC', def: [123, null]})

    console.log(ex_03)
    // => z.object({ abc: z.string(), def: z.array(z.union([z.number(), z.null()])) })

    Credit goes to @jaens for their work to detect circular schemas and prevent stack overflow.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = zx.deepPartial(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))

    type MySchema = z.infer<typeof MySchema>
    // ^? type MySchema = { a?: number, b?: { c?: string } }
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({ a: z.number(), b: z.object({ c: z.string() }) })

    console.log(zx.deepPartial.writeable(MySchema))
    // =>
    // z.object({
    // a: z.number().optional(),
    // b: z.object({
    // c: z.string().optional(),
    // d: z.array(z.boolean()).optional()
    // }).optional()
    // }).optional()
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = zx.deepRequired(z.object({ a: z.number().optional(), b: z.object({ c: z.string().optional() }) }))

    type MySchema = z.infer<typeof MySchema>
    // ^? type MySchema = { a: number, b: { c: string } }
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({
    a: z.number().optional(),
    b: z.optional(
    z.object({
    c: z.string(),
    d: z.array(z.boolean()).optional()
    })
    )
    })

    console.log(zx.deepRequired.writeable(MySchema))
    // =>
    // z.object({
    // a: z.number(),
    // b: z.object({
    // c: z.string(),
    // d: z.array(z.boolean())
    // })
    // })
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = zx.deepNullable(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))

    type MySchema = z.infer<typeof MySchema>
    // ^? type MySchema = { a: number | null, b: { c: string | null } | null }
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({
    a: z.number().optional(),
    b: z.object({
    c: z.string(),
    d: z.array(z.boolean()).optional()
    })
    })

    console.log(zx.deepNullable.writeable(MySchema))
    // =>
    // z.object({
    // a: z.number().nullable(),
    // b: z.object({
    // c: z.string().nullable(),
    // d: z.array(z.boolean().nullable()).nullable()
    // }).nullable()
    // }).nullable()
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = zx.deepNonNullable(
    z.object({
    a: z.number().nullable(),
    b: z.object({
    c: z.string().nullable(),
    }),
    })
    )

    type MySchema = z.infer<typeof MySchema>
    // ^? type MySchema = { a: number, b: { c: string } }
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({
    a: z.number().nullable(),
    b: z.object({
    c: z.string().nullable(),
    })
    })

    console.log(zx.deepNonNullable.writeable(MySchema))
    // =>
    // z.object({
    // a: z.number(),
    // b: z.object({
    // c: z.string(),
    // })
    // })
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = zx.deepReadonly(z.object({ a: z.number(), b: z.object({ c: z.string() }) }))

    type MySchema = z.infer<typeof MySchema>
    // ^? type MySchema = { readonly a: number, readonly b: { readonly c: string } }
    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({ a: z.number(), b: z.object({ c: z.string() }) })

    console.log(zx.deepReadonly.writeable(MySchema))
    // =>
    // z.object({
    // a: z.number().readonly(),
    // b: z.object({
    // c: z.string().readonly(),
    // }.readonly())
    // }.readonly())

    zx.defaultValues converts a zod schema into a "default value' that respects the structure of the schema.

    A common use case for zx.defaultValue is creating default values for forms.

    Note

    By default, zx.defaultValue does not make any assumptions about what "default" means for primitive types, which is why it returns undefined when it encounters a leaf value. This behavior is configurable.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    const MySchema = z.object({
    a: z.number(),
    b: z.object({
    c: z.string(),
    d: z.array(z.boolean())
    })
    })

    // by default, primitives are initialized as `undefined`:
    const defaultOne = zx.defaultValue(MySchema)
    console.log(defaultOne) // => { a: undefined, b: { c: undefined, d: [] } }

    // to configure this behavior, use the `fallbacks` property:
    const defaultTwo = zx.defaultValue(MySchema, { fallbacks: { number: 0, string: '' } })
    console.log(defaultTwo) // => { a: 0, b: { c: '', d: [] } }

    zx.toPaths converts a zod schema into an array of "paths" that represent the schema.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    console.log(
    zx.toPaths(z.object({ a: z.object({ c: z.string() }), b: z.number() }))
    ) // => [["a", "c"], ["b"]]

    Convert a zod schema into a string that constructs the same zod schema.

    Useful for writing/debugging tests that involve randomly generated schemas.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    console.log(
    zx.toString(
    z.templateLiteral([1n])
    )
    ) // => z.templateLiteral([1n])

    console.log(
    zx.toString(
    z.map(z.array(z.boolean()), z.set(z.number().optional()))
    )
    ) // => z.map(z.array(z.boolean()), z.set(z.number().optional()))

    console.log(
    zx.toString(
    z.tuple([
    z.number().min(0).lt(2),
    z.number().multipleOf(2).nullable(),
    ])
    )
    ) // => z.tuple([z.number().min(0).lt(2), z.number().multipleOf(2).nullable()])

    Convert a zod schema into a string that represents its type.

    To preserve JSDoc annotations for object properties, pass preserveJsDocs: true in the options object. If the property's metadata includes an example property, the example will be escaped and included as an @escape tag.

    Note

    By default, the type will be returned as an "inline" type. To give the type a name, use the typeName option.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    console.log(
    zx.toType(
    z.object({
    a: z.optional(z.literal(1)),
    b: z.literal(2),
    c: z.optional(z.literal(3))
    })
    )
    ) // => { a?: 1, b: 2, c?: 3 }

    console.log(
    zx.toType(
    z.intersection(
    z.object({ a: z.literal(1) }),
    z.object({ b: z.literal(2) })
    )
    )
    ) // => { a: 1 } & { b: 2 }

    console.log(
    zx.toType(
    z.templateLiteral([
    z.literal(['a', 'b']),
    ' ',
    z.literal(['c', 'd']),
    ' ',
    z.literal(['e', 'f'])
    ])
    )
    ) // => "a c e" | "a c f" | "a d e" | "a d f" | "b c e" | "b c f" | "b d e" | "b d f"

    // To give the generated type a name, use the `typeName` option:
    console.log(
    zx.toType(
    z.object({ a: z.optional(z.number()) }),
    { typeName: 'MyType' }
    )
    ) // => type MyType = { a?: number }

    // To preserve JSDoc annotations, use the `preserveJsDocs` option:
    console.log(
    zx.toType(
    z.object({
    street1: z.string().meta({ describe: 'Street 1 name' }),
    street2: z.string().optional().meta({ describe: 'Street 2 name', example: 'Unit B' }),
    city: z.string(),
    }),
    { typeName: 'Address', preserveJsDocs: true }
    )
    )
    // =>
    // type Address = {
    // /**
    // * Street 1 name
    // */
    // street1: string
    // /**
    // * Street 2 name
    // * @example "Unit B"
    // */
    // street2?: string
    // city: string
    // }

    zx.typeof returns the "type" (or tag) of a zod schema.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    console.log(zx.typeof(z.string())) // => "string"

    zx.tagged lets you construct a type-guard that identifies the type of zod schema you have.

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    zx.tagged('object', z.object({})) // true
    zx.tagged('array', z.string()) // false
    Note

    zx.makeLens still experimental (🔬). Use in production with care.

    zx.makeLens accepts a zod schema (classic, v4) as its first argument, and a "selector function" as its second argument.

    An optic is a generalization of a lens, but since most people use "lens" to refer to optics generally, they are sometimes used interchangeably in this document.

    With zx.makeLens, you use a selector function to build up an optic via a series of property accesses.

    Let's look at a few examples to make things more concrete.

    For our first example, let's create a lens that focuses on a structure's "a[0]" path:

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    //////////////////////////
    /// example #1: Lens ///
    //////////////////////////

    const Schema = z.object({ a: z.tuple([z.string(), z.bigint()]) })

    // Use autocompletion to "select" what you want to focus:
    // ↆↆↆↆↆↆ
    const Lens = zx.makeLens(Schema, $ => $.a[0])

    Lens
    // ^? const Lens: zx.Lens<{ a: [string, bigint] }, string>
    // 𐙘___________________𐙘 𐙘____𐙘
    // structure focus

    // Lenses have 3 properties:

    ///////////////
    // #1:
    // Lens.get -- Given a structure,
    // returns the focus

    const ex_01 = Lens.get({ a: ['hi', 0n] })
    // 𐙘_____________𐙘
    // structure

    console.log(ex_01) // => "hi"
    // 𐙘𐙘
    // focus


    ///////////////
    // #2:
    // Lens.set -- Given a new focus and a structure,
    // sets the new focus & returns the structure

    const ex_02 = Lens.set(`hey, ho, let's go`, { a: ['', 0n] })
    // 𐙘_______________𐙘 𐙘___________𐙘
    // new focus structure

    console.log(ex_02) // => { a: ["hey, ho, let's go", 0n] }
    // 𐙘_______________𐙘
    // new focus


    /////////////////
    // #3:
    // Lens.modify -- Given a "modify" callback and a structure,
    // applies the callback to the focus & returns the structure

    const ex_03 = Lens.modify((str) => str.toUpperCase(), { a: [`hey, ho`, 0n] })
    // 𐙘_______________________𐙘 𐙘__________________𐙘
    // callback structure

    console.log(ex_03) // => { a: ["HEY, HO", 0n] }
    // 𐙘_____𐙘
    // new focus

    // Note that if your callback changes the focus type,
    // that will be reflected in the return type as well:

    const ex_04 = Lens.modify((str) => str.length > 0, { a: ['', 0n] })
    // 𐙘____________________𐙘 𐙘___________𐙘
    // callback structure

    console.log(ex_04) // => { a: [false, 0n] }
    // ^? const ex_04: { a: [boolean, bigint] }
    // 𐙘_____𐙘
    // new focus

    When you use zx.makeLens on a union type, you get back a different kind of lens called a prism.

    Let's see how prisms differ from lenses:

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    ///////////////////////////
    /// example #2: Prism ///
    ///////////////////////////

    const Schema = z.union([
    z.object({ tag: z.literal('ONE'), ghi: z.number() }),
    z.object({ tag: z.literal('TWO') })
    ])

    // Let's focus on the first union member's "ghi" property.

    // If a discriminant can be inferred, autocompletion allows
    // you to select that member by its discriminant,
    // prefixed by `ꖛ`:
    //
    // ↆↆↆↆↆ
    const Prism = zx.makeLens(Schema, $ => $.ꖛONE.ghi)

    Prism
    // ^? Prism: zx.Prism<{ tag: "ONE", ghi: number } | { tag: "TWO" }, number | undefined>
    // 𐙘________________________________________𐙘 𐙘________________𐙘
    // structure focus

    // Prisms have the same 3 properties as lenses,
    // but they behave like **pattern matchers**
    // instead of _property accessors_

    ///////////////
    // #1:
    // Prism.get -- Given a matching structure,
    // returns the focus

    const ex_01 = Prism.get({ tag: 'ONE', ghi: 123 })
    // 𐙘____________________𐙘
    // structure

    console.log(ex_01) // => 123
    // 𐙘𐙘𐙘
    // focus

    // Prism.get -- If the match fails,
    // returns undefined

    const ex_02 = Prism.get({ tag: 'TWO' })
    // 𐙘___________𐙘
    // structure

    console.log(ex_02) // => undefined
    // 𐙘𐙘𐙘
    // no match


    ///////////////
    // #2:
    // Prism.set -- Given a new focus and a matching structure,
    // sets the new focus & returns the structure

    const ex_03 = Prism.set(9_000, { tag: 'ONE', ghi: 123 })
    // 𐙘___𐙘 𐙘____________________𐙘
    // new focus structure

    console.log(ex_03) // => { tag: 'ONE', ghi: 9000 }
    // 𐙘__𐙘
    // new focus

    // Prism.set -- If the match fails,
    // returns the structure unchanged

    const ex_04 = Prism.set(9000, { tag: 'TWO' })

    console.log(ex_04) // => { tag: 'TWO' }
    // 𐙘__________𐙘
    // no match


    //////////////////
    // #3:
    // Prism.modify -- Given a "modify" callback and a matching structure,
    // applies the callback to the focus & returns the structure

    // Just like with lenses, if your callback changes the focus type,
    // that will be reflected in the return type:

    const ex_05 = Prism.modify((n) => [n, n], { tag: 'ONE', ghi: 123 })
    // 𐙘___________𐙘 𐙘____________________𐙘
    // callback structure

    console.log(ex_05) // => { tag: 'ONE', ghi: [123, 123] }
    // ^? const ex_05: { tag: "ONE", ghi: number[] } | { tag: "TWO" }

    // Prism.modify -- If the match fails,
    // returns the structure unchanged

    const ex_06 = Prism.modify((n) => n + 1, { tag: 'TWO' })
    // 𐙘__________𐙘 𐙘___________𐙘
    // callback structure

    console.log(ex_06) // => { tag: 'TWO' }
    // ^? const ex_06: { tag: "ONE", ghi: number } | { tag: "TWO" }

    When you use zx.makeLens on a collection type (such as z.array or z.record), you get back a different kind of lens called a traversal.

    Let's see how traversals differ from lenses and prisms:

    import { z } from 'zod'
    import { zx } from '@traversable/zod'

    ///////////////////////////////
    /// example #3: Traversal ///
    ///////////////////////////////

    const Schema = z.object({
    a: z.array(
    z.object({
    b: z.number(),
    c: z.string()
    })
    )
    })

    // Let's focus on the `"b"` property of each of the elements of the structure's `"a"` property:

    // To indicate that you want to traverse the array,
    // autocomplete the `ᣔꓸꓸ` field:
    // ↆↆ
    const Traversal = zx.makeLens(Schema, $ => $ => $.a.ᣔꓸꓸ.b)


    Traversal
    // ^? Traversal: zx.Traversal<{ a: { b: number, c: string }[] }, number>
    // 𐙘_____________________________𐙘 𐙘____𐙘
    // structure focus

    // Traversals have the same 3 properties as lenses and prisms,
    // but they behave like **for-of loops**
    // instead of _property accessors_ or _patterns matchers_


    ///////////////
    // #1:
    // Traversal.get -- Given a matching structure,
    // returns all of the focuses

    const ex_01 = Traversal.get({ a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
    // 𐙘_____________________________________𐙘
    // structure

    console.log(ex_01) // => [0, 1]
    // 𐙘__𐙘
    // focus


    ///////////////
    // #2:
    // Traversal.set -- Given a new focus and a matching structure, sets all of the elements
    // of the collection to the new focus & returns the structure

    const ex_02 = Traversal.set(9_000, { a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
    // 𐙘___𐙘 𐙘_____________________________________𐙘
    // new focus structure

    console.log(ex_02) // => { a: [{ b: 9000, c: '' }, { b: 9000, c: '' }] }
    // 𐙘__𐙘 𐙘__𐙘
    // new focus new focus


    //////////////////
    // #3:
    // Traversal.modify -- Given a "modify" callback and a matching structure,
    // applies the callback to _each_ focus & returns the structure

    // Just like with lenses & prisms, if your callback changes the focus type,
    // that will be reflected in the return type:

    const ex_03 = Traversal.modify((n) => [n, n + 1], { a: [{ b: 0, c: '' }, { b: 1, c: '' }] })
    // 𐙘______________𐙘 𐙘_____________________________________𐙘
    // callback structure

    console.log(ex_03) // => { a: [{ b: [0, 1], c: '' }, { b: [1, 2], c: '' }] }
    // ^? const ex_03: { a: { b: number[], c: string }[] }
    // 𐙘______𐙘
    // new focus
    Note

    zx.fold is an advanced API.

    Use zx.fold to define a recursive traversal of a zod schema. Useful when building a schema rewriter.

    zx.fold is a powertool. Most of @traversable/zod uses zx.fold under the hood.

    Compared to the rest of the library, it's fairly "low-level", so unless you're doing something pretty advanced you probably won't need to use it directly.

    Let's write a function that takes an arbitrary zod schema as input and stringifies it.

    Note

    This functionality is already available off-the shelf via zx.toString. We'll be building this example from scratch using zx.fold for illustrative purposes.

    import { zx } from '@traversable/zod'

    const toString = zx.fold<string>((x) => {
    // 𐙘____𐙘 this type parameter fills in the "holes" below
    switch (true) {
    case zx.tagged('null')(x): return 'z.null()'
    case zx.tagged('number')(x): return 'z.number()'
    case zx.tagged('string')(x): return 'z.string()'
    case zx.tagged('boolean')(x): return 'z.boolean()'
    case zx.tagged('undefined')(x): return 'z.undefined()'
    case zx.tagged('array')(x): return `${x._zod.def.element}.array()`
    // ^? method element: string
    case zx.tagged('optional')(x): return `${x._zod.def.innerType}.optional()`
    // ^? method innerType: string
    case zx.tagged('tuple')(x): return `z.tuple([${x._zod.def.items.join(', ')}])`
    // ^? method items: string[]
    case zx.tagged('record')(x): return `z.record(${x._zod.def.keyType}, ${x._zod.def.valueType})`
    // ^? method keyType: string
    case zx.tagged('object')(x):
    return `z.object({ ${Object.entries(x._zod.def.shape).map(([k, v]) => `${k}: ${v}`).join(', ')} })`
    // ^? method shape: { [x: string]: string }
    default: throw Error(`Unimplemented: ${x._zod.def.type}`)
    // ^^ there's nothing stopping you from implementing the rest!
    }
    })

    // Let's test it out:

    console.log(
    zx.toString(
    z.object({ A: z.array(z.string()), B: z.optional(z.tuple([z.number(), z.boolean()])) })
    )
    )
    // => z.object({ A: z.array(z.string()), B: z.optional(z.tuple([z.number(), z.boolean()])) })

    Our "naive" implementation is actually more robust than it might seem -- in fact, that's how zx.toString is actually defined.

    Note

    zx.Functor is an advanced API

    zx.Functor is the primary abstraction that powers @traversable/zod.

    zx.Functor is a powertool. Most of @traversable/zod uses zx.Functor under the hood.

    Compared to the rest of the library, it's fairly "low-level", so unless you're doing something pretty advanced you probably won't need to use it directly.

    Namespaces

    check
    deepClone
    deepNonNullable
    deepNullable
    deepOptional
    deepPartial
    deepReadonly
    deepRequired
    toPaths
    toString
    toType
    zx

    Type Aliases

    deepNonNullable
    deepNullable
    deepOptional
    deepPartial
    deepReadonly
    deepRequired
    defaultValue
    fromJson
    RAISE_ISSUE_URL
    VERSION
    ZOD_CHANGELOG

    Variables

    fold
    Functor
    isOptional
    isOptionalDeep
    RAISE_ISSUE_URL
    tagged
    typeof
    VERSION
    ZOD_CHANGELOG
    ZOD_VERSION

    Functions

    check
    deepClone
    deepEqual
    deepNonNullable
    deepNullable
    deepOptional
    deepPartial
    deepReadonly
    deepRequired
    defaultValue
    fromConstant
    fromJson
    getFallback
    getSubSchema
    makeLens
    parsePath
    toPaths
    toString
    toType